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=PFL LastTime

= Velocity distribution function
= Relationship between macroscopic properties and velocity distribution

= Evaporation kinetics (Schrage eguation)
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=P7L  General Governing Equation

0 08.10.2024

Surface S?just

inside vopor7

PvWo

Vapor at T, R,

m’} my

L

Interfocej

Liquid at T,,P,

»

Y
z=0

v



=PFL  One-Dimensional Case
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=F7L  Boltzmann Equation
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=L Bolling

cooking (nuclear) power plant Immersion cooling
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=F7L  Evaporation vs Boiling

Evaporation Boiling

Bubble
nucleation
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=PFL Intended Learning Objectives Today

= Analyze the free energy of vapor embryo (Thermodynamics)

= Understand the derivation of bubble growth kinetics at small sizes

 Reading materials: Carey, Chapter 5.2, 5.3, 6.1
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Formation of a Vapor Embryo
(Homogeneous Nucleation)

Initial State After Embryo Formation
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Figure 5.7 in Carey
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=F7L. Homogeneous Nucleation

Initial State After Embryo Formation
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=PFL Gibbs Free Energy Change

AG = Nv(gv — g + (P, = P)V, + 4nray,

Considering T, and P, as fixed values, assuming mechanical equilibrium is always satisfied

With ideal gas law, N, = P,V,/kgT; is also a function of r

AG can be considered as a function of r, to which we can apply Taylor expansion near r,
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=PFL Gibbs Free Energy Change
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Gibbs Free Energy Change ’

AG 4
Density fluctuation in superheated
AG liquid produces bubbles of random r
e 7T
/ N\
/ \\ If r < 1, the bubble collapses
/ \ If r > 1, the bubble grows
/ \ -
Ie \ r

\ How do we determine r,
Figure 5.9 in Carey



=FrL Equilibrium Bubble Radius

After Embryo Formation
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=P*L  Heterogeneous Nucleation

Initial State After Embryo Formation
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=PFL Gibbs Free Energy Change
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Equilibrium Bubble Radius
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=P7L Gibbs Free Energy Barrier
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Embryo Size Distribution

Let’'s assume the number of embryos consisting of n molecules per unit volume N,, follows

AG (1)
kpT;

Ny = pn,iexp [—
Py, can be understood as the number of liquid molecules per unit

volume (AG = 0 corresponds to the liquid phase)

For an embryo of size n, define j,, as the evaporating molecular flux and j,. as the
condensing molecular flux [m-2s]
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=P7L  Embryo Size Distribution

NnAnjne = Npt1Any 1j(n+1)c

The rate at which n molecule embryos — n+1 molecule embryos through evaporation

IS the same as n+1 molecule embryos — n molecule embryos through condensation
No net exchange between two size groups

In superheated liquid, equilibrium is not necessarily satisfied

Consider the excess rate of n molecule embryos — n+1 molecule
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=P7L  Embryo Size Distribution
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=P7L  Embryo Size Distribution
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=P7L  Embryo Size Distribution
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=P7L  Embryo Size Distribution
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=PL Embryo Size Distribution

After Embryo Formation
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=P7L  Embryo Size Distribution
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=PFL  Physical Meaning of /

J represents the rate at which embryo bubbles grow from nto n + 1 molecules
per unit volume [m3s]

This includes the rate at which bubbles of the critical size are generated

Higher J implies higher probability of nucleation
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=PFL  Physical Meaning of / ’
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4712 : :
exp (— :;e;l”) increases sharply with temperature
Bl

J = pn, [nm(z—i)

Pye

A change of 1°C can change J by as much as three or four orders of magnitude

We expect that there will exist a narrow range of temperature below which homogeneous
nucleation does not occur, and above which it occurs almost immediately.



=PFL  Generation Rate of Bubble of Critical Size

(Homogeneous case) Pressure = 101 kPa
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=PFL Intended Learning Objectives Today

= Analyze the free energy of vapor embryo (Thermodynamics)

= Understand the derivation of bubble growth kinetics at small sizes

 Reading materials: Carey, Chapter 5.2, 5.3, 6.1
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